These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Hemin- and myoglobin-catalyzed reaction of 1-palmitoyl-2-linoleoyl-3-sn-phosphatidylcholine 13-hydroperoxide with γ-tocopherol in micelles and liposomes.
    Author: Yamauchi R, Kinoshita T, Hasegawa Y, Iwamoto S.
    Journal: Chem Phys Lipids; 2017 Dec; 209():37-44. PubMed ID: 29122613.
    Abstract:
    The secondary process of lipid peroxidation proceeds by the free radical reaction to produce some toxic aldehydes. Since γ-tocopherol (γ-TH), one of the major forms of vitamin E in some vegetable oils, acts as a free radical scavenger, γ-TH may suppress the formation of such aldehydes. This study reports the effect and reaction products of γ-TH on the hemin- or myoglobin-catalyzed decomposition of 1-palmitoyl-2-linoleoyl-3-sn-phosphatidylcholine 13-hydroperoxide (PLPC-OOH) in micelles and liposomes. γ-TH and PLPC-OOH in micelles were reacted in the presence of hemin, and the reaction products were characterized as 1-palmitoyl-2-[(8a-dioxy-γ-tocopherone)-12,13-epoxyoctadecenoyl]-3-sn-phosphatidylcholines (γT-OO-epoxyPLPC), 1-palmitoyl-2-[(γ-tocopheroxy)-12,13-epoxyoctadecenoyl]-3-sn-phosphatidylcholines (γT-epoxyPLPC), and the adducts of γ-TH dimer with PLPC-OOH derived epoxyperoxyl and epoxyalkyl radicals (γTD-OO-epoxyPLPC and γTD-epoxyPLPC). The hemin- and myoglobin-catalyzed decomposition of PLPC-OOH in micelles produced hexanal and 4-hydroxy-2-nonenal as the major aldehydic products. γ-TH suppressed the formation of these aldehydes as the same level as α-TH did, and γ-tocopherylquinone, tocored, γ-TH dimers, and the addition products (γT-OO-epoxyPLPC, γT-epoxyPLPC, γTD-OO-epoxyPLPC, and γTD-epoxyPLPC) were formed during the reaction. In liposomes, hexanal was detected as the major aldehyde and its suppression by γ-TH was less effective than that by α-TH. The results indicate that γ-TH may suppress the formation of aldehydes by trapping the epoxyperoxyl and epoxyalkyl radicals derived from PLPC-OOH although its ability is weak in liposomal systems.
    [Abstract] [Full Text] [Related] [New Search]