These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: TDCPP protects cardiomyocytes from hypoxia-reoxygenation injury induced apoptosis through mitigating calcium overload and promotion GSK-3β phosphorylation.
    Author: He X, Li S, Fang X, Liao Y.
    Journal: Regul Toxicol Pharmacol; 2018 Feb; 92():39-45. PubMed ID: 29129621.
    Abstract:
    TDCPP, Tris (1, 3-dichloro-2-propyl) phosphate belongs to a group of chemicals known as triester organophosphate flame retardants, It can alter calcium homeostasis at much lower concentrations in normal conditions, but the mechanism is unclear till now. Calcium overload is a leading cause of apoptosis in myocardial ischemia/reperfusion (I/R) injury, thus how to mitigate Ca2+-overload is deserved to be investigated. We therefore hypothesized that TDCPP could attenuate cardiomyocytes apoptosis in I/R injury. H/R (hypoxia/reoxygenation) experiments in vitro were used to simulate in vivo I/R injury. The present study aimed to explore the potential effect of TDCPP in cardiomyocytes after H/R injury, Ca2+ imaging technique was used to explore SOCE(store-operated calcium entry) and Ca2+-overload levels, western blot technique was used to explore the potential target, the cell morphology, cell viability and mitochondrial membrane potential were also detected. The results have shown that: TDCPP could decrease SOCE, restore H9c2 cell viability, mitigate Ca2+-overload in H/R injury and reduce the mitochondrial membrane potential. Furthermore, TDCPP decreased STIM1 expression and promoted GSK3β phosphorylation. Collectively, for the first time, this study suggest the antiapoptosis roles of TDCPP in H/R injury are via mitigation Ca2+-overload and promoting GSK-3β phosphorylation.
    [Abstract] [Full Text] [Related] [New Search]