These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Sulphonated Formononetin Induces Angiogenesis through Vascular Endothelial Growth Factor/cAMP Response Element-Binding Protein/Early Growth Response 3/Vascular Cell Adhesion Molecule 1 and Wnt/β-Catenin Signaling Pathway.
    Author: Dong Z, Shi Y, Zhao H, Li N, Ye L, Zhang S, Zhu H.
    Journal: Pharmacology; 2018; 101(1-2):76-85. PubMed ID: 29131133.
    Abstract:
    BACKGROUND: Sodium formononetin-3'-sulphonate (Sul-F) is a derivative of the isoflavone formononetin. In this study, we investigated whether Sul-F can regulate angiogenesis and the potential mechanism in vitro. METHODS: We examined the effects of Sul-F on cell proliferation, cell invasion, and tube formation in the human umbilical vein endothelial cell line (HUVEC). To better understand the mechanism involved, we investigated effects of the following compounds: cAMP response element-binding protein (CREB) inhibitor 2-naphthol-AS-E-phosphate (KG-501), early growth response 3 (Egr-3) siRNA, vascular endothelial growth factor (VEGF) antagonist soluble VEGF receptor 1 (sFlt-1), VEGF receptor 2 blocker SU-1498, Wnt5a antagonist WIF-1 recombinant protein (WIF-1), and inhibitor of Wnt/β-catenin recombinant Dickkopf-1 protein (DKK-1). HUVEC proliferation was tested by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT). A scratch adhesion test was used to assess cell invasion ability. Matrigel tube formation assay was performed to test capillary tube formation ability. Activation of the VEGF/CREB/Egr-3/Vascular cell adhesion molecule 1 (VCAM-1) pathway in HUVEC was tested by Western blot analysis. RESULTS: Our results suggest that Sul-F induced angiogenesis in vitro by enhancing cell proliferation, invasion, and tube formation. The increase in proliferation and tube formation by Sul-F was counteracted by DKK-1, WIF-1, SU1498, KG-501, sFlt-1, and Egr-3 siRNA. CONCLUSIONS: These results may suggest that Sul-F induces angiogenesis in vitro via a programed Wnt/β-catenin pathway and VEGF/CREB/Egr-3/VCAM-1 signaling axis.
    [Abstract] [Full Text] [Related] [New Search]