These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Foams Stabilized by β-Lactoglobulin Amyloid Fibrils: Effect of pH.
    Author: Peng D, Yang J, Li J, Tang C, Li B.
    Journal: J Agric Food Chem; 2017 Dec 06; 65(48):10658-10665. PubMed ID: 29135243.
    Abstract:
    β-Lactoglobulin fibrils could serve as a surface-active component and form adsorption layers at the air/water interface. In this study, the physical parameters related to the surface adsorption, foaming, and surface properties of β-lactoglobulin fibrils as a function of pH (2-8) were investigated. Results showed that an increase of pH from 2 to 5 led to a rise of the viscoelastic modulus of the surface adsorption layer and half-life time (t1/2) of foams, but it decreased foamability. When the pH was close to its isoelectric point (5.2), fibrils had the lowest electrostatic repulsion and entangled at the air/water interface resulting in a tightly packaged adsorption layer around bubbles to prevent coalescence and coarsening. When the pH (7-8) was higher than the pI of fibrils, the negatively charged β-lactoglobulin fibrils possessed good foamability (∼80%) and high foam stability (t1/2 ≈ 8 h) simultaneously even at low concentration (1 mg/mL). It demonstrated that β-lactoglobulin fibrils with negative charges presented a good foaming behavior and could be a potential new foaming agent in the food industry.
    [Abstract] [Full Text] [Related] [New Search]