These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: TALEN-mediated shift of mitochondrial DNA heteroplasmy in MELAS-iPSCs with m.13513G>A mutation. Author: Yahata N, Matsumoto Y, Omi M, Yamamoto N, Hata R. Journal: Sci Rep; 2017 Nov 14; 7(1):15557. PubMed ID: 29138463. Abstract: Induced pluripotent stem cells (iPSCs) are suitable for studying mitochondrial diseases caused by mitochondrial DNA (mtDNA) mutations. Here, we generated iPSCs from a patient with mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS) with the m.13513G>A mutation. The patient's dermal fibroblasts were reprogrammed, and we established two iPSC clones with and without mutant mtDNA. Furthermore, we tried to decrease mutant mtDNA level in iPSCs using transcription activator-like effector nucleases (TALENs). We originally engineered platinum TALENs, which were transported into mitochondria, recognized the mtDNA sequence including the m.13513 position, and preferentially cleaved G13513A mutant mtDNA (G13513A-mpTALEN). The m.13513G>A heteroplasmy level in MELAS-iPSCs was decreased in the short term by transduction of G13513A-mpTALEN. Our data demonstrate that this mtDNA-targeted nuclease would be a powerful tool for changing the heteroplasmy level in heteroplasmic iPSCs, which could contribute to elucidation of the pathological mechanisms of mitochondrial diseases caused by mtDNA mutations.[Abstract] [Full Text] [Related] [New Search]