These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Protective effects of coenzyme Q10 nanoparticles on dichlorvos-induced hepatotoxicity and mitochondrial/lysosomal injury.
    Author: Eftekhari A, Ahmadian E, Azami A, Johari-Ahar M, Eghbal MA.
    Journal: Environ Toxicol; 2018 Feb; 33(2):167-177. PubMed ID: 29143438.
    Abstract:
    Development of biocompatible antioxidant nanoparticles for xenobiotic-induced liver disease treatment by oral or parenteral administration is of great interest in medicine. In the current study, we demonstrate the protective effects of coenzyme Q10 nanoparticles (CoQ10-NPs) on hepatotoxicity induced by dichlorvos (DDVP) as an organophosphate. Although CoQ10 is an efficient antioxidant, its poor bioavailability has limited the applications of this useful agent. First, CoQ10-NPs were prepared then characterized using dynamic light scattering (DLS) and transmission electron microscopy (TEM). In DDVP-treated and non-treated hepatocytes in the presence of CoQ10-NPs, cell viability, the level of reactive oxygen species (ROS), lipid peroxidation (LPO), mitochondrial membrane potential (MMP), lysosome membrane integrity, and cellular glutathione (GSH) content were measured. The prepared CoQ10-NPs were mono-dispersed and had narrow size distribution with average diameter of 54 nm. In the in vivo study, we evaluated the enzymes, which are involved in the antioxidant system for maintenance of normal liver function. In comparison to nonparticulate CoQ10, the CoQ10-NPs efficiently decreased the ROS formation, lipid peroxidation and cell death. Also, particulate form of CoQ10 improved MMP, GSH level and lysosome membrane integrity. In the in vivo, study, we revealed that CoQ10-NPs were better hepatoprotective than its nonparticulate form (P < .05). Altogether, we propose that the CoQ10-NPs have potential capability to be used as a therapeutic and prophylactic agent for poisoning that is induced by organophosphate agents, especially in the case of DDVP. Furthermore, these positive remarks make this nanoparticle amenable for the treatment of xenobiotic-induced liver diseases.
    [Abstract] [Full Text] [Related] [New Search]