These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The PrpF protein of Shewanella oneidensis MR-1 catalyzes the isomerization of 2-methyl-cis-aconitate during the catabolism of propionate via the AcnD-dependent 2-methylcitric acid cycle.
    Author: Rocco CJ, Wetterhorn KM, Garvey GS, Rayment I, Escalante-Semerena JC.
    Journal: PLoS One; 2017; 12(11):e0188130. PubMed ID: 29145506.
    Abstract:
    The 2-methylcitric acid cycle (2-MCC) is a common route of propionate catabolism in microorganisms. In Salmonella enterica, the prpBCDE operon encodes most of the 2-MCC enzymes. In other organisms, e.g., Shewanella oneidensis MR-1, two genes, acnD and prpF replace prpD, which encodes 2-methylcitrate dehydratase. We showed that together, S. oneidensis AcnD and PrpF (SoAcnD, SoPrpF) compensated for the absence of PrpD in a S. enterica prpD strain. We also showed that SoAcnD had 2-methylcitrate dehydratase activity and that PrpF has aconitate isomerase activity. Here we report in vitro evidence that the product of the SoAcnD reaction is an isomer of 2-methyl-cis-aconitate (2-MCA], the product of the SePrpD reaction. We show that the SoPrpF protein isomerizes the product of the AcnD reaction into the PrpD product (2-MCA], a known substrate of the housekeeping aconitase (AcnB]. Given that SoPrpF is an isomerase, that SoAcnD is a dehydratase, and the results from in vivo and in vitro experiments reported here, it is likely that 4-methylaconitate is the product of the AcnD enzyme. Results from in vivo studies using a S. enterica prpD strain show that SoPrpF variants with substitutions of residues K73 or C107 failed to support growth with propionate as the sole source of carbon and energy. High-resolution (1.22 Å) three-dimensional crystal structures of PrpFK73E in complex with trans-aconitate or malonate provide insights into the mechanism of catalysis of the wild-type protein.
    [Abstract] [Full Text] [Related] [New Search]