These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Rare earth metal-organic complexes constructed from hydroxyl and carboxyl modified arenesulfonate: syntheses, structure evolutions, and ultraviolet, visible and near-infrared luminescence.
    Author: Xiao YH, Deng ZP, Zhu ZB, Huo LH, Gao S.
    Journal: Dalton Trans; 2017 Dec 21; 46(47):16493-16504. PubMed ID: 29148553.
    Abstract:
    The reaction of 2-hydroxyl-4-carboxylbenzenesulfonic acid (H3L) and rare earth (RE) metal nitrates together with two N-heterocyclic ligands gives rise to the formation of 38 complexes, namely, [La(H2L)2(ox)0.5(H2O)4]n·2nH2O (1-La) (ox = oxalate), [RE2(H2L)2 (ox)(H2O)12]·2(H2L)·8H2O (2-RE) (RE = Nd, Sm, Eu, Gd, Tb, Dy), [RE(SO4)(H2O)7]·(H2L)·3H2O (3-RE) (RE = Ho, Er, Tm, Yb, Lu and Y), [RE(L)(H2O)3]n·nH2O (4-RE) (RE = Er, Tm, Yb and Lu), [RE(L)(2,2'-bipy)(H2O)]n (5-RE) (RE = La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho and Y, 2,2'-bipy = 2,2'-bipyridine), [RE(L)(1,10-phen)(H2O)]n (6-RE) (RE = La, Pr, Nd, Sm, Eu, 1,10-phen = 1,10-phenanthroline), and [RE(L')(1,10-phen)2(H2O)]n (7-RE) (RE = Gd, Tb, Ho, Er, Yb and Lu, H3L' = 2-hydroxy-3-nitro-4-carboxybenzenesulfonic acid), which have been characterized by elemental analysis, IR, TG, PL, powder and single-crystal X-ray diffraction. Complexes 1-La, 2-RE and 3-RE present zigzag chain, di- and mono-nuclear structures, in which H2L- acts as a counterion and monodentate and μ2-bridging monoanions. For the three species, light RE metal cations tend to induce the formation of oxalate while heavy RE metal cations tend to induce the formation of sulfate. Complexes 4-RE and 5-RE exhibit layer structures incorporating helical chains, in which the L3- trianion presents μ3 and μ4 coordination modes. Complexes 6-RE containing light RE metal cations show layer structures incorporating helical chains, while complexes 7-RE containing heavy RE metal cations have helical chain structures supported by the bridging of in situ generated L'3-. Remarkably, the in situ generated oxalates in 1-La and 2-RE, as well as the in situ generated L'3- in 7-RE, also play a crucial role in determining the structures of these complexes. Structure evolutions make these complexes present various luminescent emissions. Complexes 3-Tm, 3-Yb, 3-Lu, 3-Y and 4-Lu exhibit ultraviolet emissions from 354 to 370 nm. Complexes 1-La and 6-La present blue emissions at 442 and 463 nm. Complexes 2-Eu, 2-Tb, 5-Tb and 7-Tb exhibit characteristic red and green emissions while the complex 5-Y presents a green emission at 501 nm. Meanwhile, complexes 2-Nd, 3-Yb, 4-Yb, 5-Nd, 6-Nd, and 7-Yb show near-infrared (NIR) emissions. Moreover, 2-Eu, 2-Tb, 5-Tb, 7-Tb and 5-Y show longer luminescence lifetimes from 390.47 to 1211.57 μs.
    [Abstract] [Full Text] [Related] [New Search]