These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Auto-correlated directional swimming can enhance settlement success and connectivity in fish larvae. Author: Berenshtein I, Paris CB, Gildor H, Fredj E, Amitai Y, Lapidot O, Kiflawi M. Journal: J Theor Biol; 2018 Feb 14; 439():76-85. PubMed ID: 29154908. Abstract: Larvae of coastal-marine fishes have been shown repeatedly to swim directionally in the pelagic environment. Yet, biophysical models of larval dispersal typically impose a Simple Random Walk (SRW) algorithm to simulate non-directional movement in the open ocean. Here we investigate the use of a Correlated Random Walk (CRW) algorithm; imposing auto-correlated directional swimming onto simulated larvae within a high-resolution 3D biophysical model of the Gulf of Aqaba, the Red Sea. Our findings demonstrate that implementation of auto-correlated directional swimming can result in an increase of up to ×2.7 in the estimated success rate of larval-settlement, as well as an increase in the extent of connectivity. With accumulating empirical support for the capacity for directional-swimming during the pelagic phase, we propose that CRW should be applied in biophysical models of dispersal by coastal marine fish-larvae.[Abstract] [Full Text] [Related] [New Search]