These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Continuous ambulatory hand force monitoring during manual materials handling using instrumented force shoes and an inertial motion capture suit.
    Author: Faber GS, Koopman AS, Kingma I, Chang CC, Dennerlein JT, van Dieën JH.
    Journal: J Biomech; 2018 Mar 21; 70():235-241. PubMed ID: 29157658.
    Abstract:
    Hand forces (HFs) are commonly measured during biomechanical assessment of manual materials handling; however, it is often a challenge to directly measure HFs in field studies. Therefore, in a previous study we proposed a HF estimation method based on ground reaction forces (GRFs) and body segment accelerations and tested it with laboratory equipment: GFRs were measured with force plates (FPs) and segment accelerations were measured using optical motion capture (OMC). In the current study, we evaluated the HF estimation method based on an ambulatory measurement system, consisting of inertial motion capture (IMC) and instrumented force shoes (FSs). Sixteen participants lifted and carried a 10-kg crate from ground level while 3D full-body kinematics were measured using OMC and IMC, and 3D GRFs were measured using FPs and FSs. We estimated 3D hand force vectors based on: (1) FP+OMC, (2) FP+IMC and (3) FS+IMC. We calculated the root-mean-square differences (RMSDs) between the estimated HFs to reference HFs calculated based on crate kinematics and the GRFs of a FP that the crate was lifted from. Averaged over subjects and across 3D force directions, the HF RMSD ranged between 10-15N when using the laboratory equipment (FP + OMC), 11-18N when using the IMC instead of OMC data (FP+IMC), and 17-21N when using the FSs in combination with IMC (FS + IMC). This error is regarded acceptable for the assessment of spinal loading during manual lifting, as it would results in less than 5% error in peak moment estimates.
    [Abstract] [Full Text] [Related] [New Search]