These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Influence of screw combination and nail materials in the stability of anterograde reamed intramedullary nail in distal femoral fractures.
    Author: Gabarre S, Albareda J, Gracia L, Puértolas S, Ibarz E, Herrera A.
    Journal: Injury; 2017 Nov; 48 Suppl 6():S47-S53. PubMed ID: 29162241.
    Abstract:
    Intramedullary nailing (IM) is a technique universally accepted to treat femoral diaphyseal fractures. The treatment of fractures located in the distal third remains a controversial issue though. A finite element model of the femur has been developed, analyzing distal fractures with several gap sizes combined with different interlocking combinations of distal screws with one oblique screw proximally to stabilize the intramedullary nail. The mechanical strength of the nail against bending and compression efforts was also studied. Beside the FE simulations, a clinical follow-up of 15 patients, 6 males and 9 females, with mean age of 53.2 years was carried out. Localizations of fractures were 10 in the right femur and 5 in the left femur, respectively. A fairly good correspondence agreement between clinical results and the simulated fractures in terms of gap size was found. Non-comminuted fractures had a mean consolidation time of 20.5 weeks (4.8 months), a tendency corresponding well to the mobility obtained in the FE simulations; Comminuted fractures on the other hand exhibited a higher mean consolidation period of 22.2 weeks (5.2 months) secondary to the excessive mobility at fracture site obtained by means of FE simulations. The best stability at fracture site was found for the system with three distal screws and the system with two distal screws placed medial lateral. The highest leverage of distal screws was obtained maximizing the distance between them and choosing the coronal plane for their orientation. The results obtained with both nail materials (stainless steel and titanium alloy) show a higher mobility when using titanium nails. Steel nails provide stiffer osteosyntheses than the titanium nails. In conclusion, the best screw combination in terms of stability to produce fracture healing and the least difficulties during treatment is the one which had one oblique proximal screw with two distal lateral screw implanted in the coronal plane.
    [Abstract] [Full Text] [Related] [New Search]