These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Fe3O4-AuNPs anchored 2D metal-organic framework nanosheets with DNA regulated switchable peroxidase-like activity.
    Author: Tan B, Zhao H, Wu W, Liu X, Zhang Y, Quan X.
    Journal: Nanoscale; 2017 Dec 07; 9(47):18699-18710. PubMed ID: 29165491.
    Abstract:
    Two-dimensional (2D) metal-organic framework (MOF) nanosheets emerging as a new member of the 2D family have received significant research interest in recent years. Herein, we have successfully synthesized 2D copper-based MOF nanosheets with bimetallic anchorage using a facile two-step process at room temperature and ambient pressure, denoted as Cu(HBTC)-1/Fe3O4-AuNPs nanosheets. The as-synthesized 2D bimetallic MOF nanosheets displayed enhanced peroxidase-like activity with relatively high catalytic velocity and affinity for substrates compared with previously reported peroxidase mimics. Furthermore, their intrinsic peroxidase-like catalytic activity could be flexibly regulated by single-stranded DNA (ssDNA), exhibiting the enhancement of 3,3',5,5'-tetramethylbenzidine (TMB) oxidation or inhibition of 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)diammonium salt (ABTS) oxidation due to the adsorption of ssDNA via π-π stacking. Accordingly, on the basis of their peroxidase-like activity, our prepared 2D bimetallic immobilized MOF nanosheets achieved ultra-sensitive detection of H2O2 with a linear range of 2.86 to 71.43 nM, and comparable detection performance for glucose with a linear range of 12.86 to 257.14 μM. By means of their controllable peroxidase-like activity, a versatile colorimetric sensing platform was developed which realized the detection of sulfadimethoxine (SDM) with a linear range of 3.57 to 357.14 μg L-1 and the limit of detection (LOD) of 1.70 μg L-1. With the multiplexed performance for detecting various targets, our as-synthesized bimetallic MOF nanosheets hold great promise for applications in environmental monitoring, as well as bioassays by virtue of their good biocompatibility.
    [Abstract] [Full Text] [Related] [New Search]