These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: In Vivo Differentiation of Uric Acid Versus Non-Uric Acid Urinary Calculi With Third-Generation Dual-Source Dual-Energy CT at Reduced Radiation Dose.
    Author: Franken A, Gevenois PA, Muylem AV, Howarth N, Keyzer C.
    Journal: AJR Am J Roentgenol; 2018 Feb; 210(2):358-363. PubMed ID: 29166148.
    Abstract:
    OBJECTIVE: The objective of our study was to evaluate in vivo urinary calculus characterization with third-generation dual-source dual-energy CT (DECT) at reduced versus standard radiation dose. SUBJECTS AND METHODS: One hundred fifty-three patients requiring unenhanced CT for suspected or known urolithiasis were prospectively included in our study. They underwent two acquisitions at reduced-dose CT (90 kV and 50 mAsref; Sn150 kV and 31 mAsref, where Sn denotes the interposition of a tin filter in the high-energy beam) and standard-dose CT (90 kV and 50 mAsref; Sn150 kV and 94 mAsref). One radiologist interpreted the reduced-dose examinations before the standard-dose examinations during the same session. Among 103 patients (23 women, 80 men; mean age ± SD, 50 ± 15 years; age range, 18-82 years) with urolithiasis, dedicated DECT software measured the maximal diameter and CT numbers, calculated the DECT number ratio, and labeled with a color code each calculus visualized by the radiologist as uric acid (UA) or non-UA. Volume CT dose index (CTDIvol) and dose-length product (DLP) were recorded. RESULTS: The radiologist visualized 279 calculi on standard-dose CT and 262 on reduced-dose CT; 17 calculi were missed on reduced-dose CT, all of which were ≤ 3 mm. Among the 262 calculi visualized at both doses, the CT number ratio was obtained with the software for 227 calculi and was not different between the doses (p = 0.093). Among these 262 calculi, 197 were labeled at both doses; 194 of the 197 labeled calculi were labeled with the same color code. Among the 65 remaining calculi, 48 and 61 (all ≤ 5 mm) were not labeled at standard-dose and reduced-dose CT (p = 0.005), respectively. At reduced-dose CT, the mean CTDIvol was 2.67 mGy and the mean DLP was 102.2 mGy × cm. CONCLUSION: With third-generation dual-source DECT, a larger proportion of calculi ≤ 5 mm are not characterized as UA or non-UA at a reduced dose.
    [Abstract] [Full Text] [Related] [New Search]