These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Exploring GPCR-Ligand Interactions with the Fragment Molecular Orbital (FMO) Method. Author: Chudyk EI, Sarrat L, Aldeghi M, Fedorov DG, Bodkin MJ, James T, Southey M, Robinson R, Morao I, Heifetz A. Journal: Methods Mol Biol; 2018; 1705():179-195. PubMed ID: 29188563. Abstract: The understanding of binding interactions between any protein and a small molecule plays a key role in the rationalization of affinity and selectivity. It is essential for an efficient structure-based drug design (SBDD) process. FMO enables ab initio approaches to be applied to systems that conventional quantum-mechanical (QM) methods would find challenging. The key advantage of the Fragment Molecular Orbital Method (FMO) is that it can reveal atomistic details about the individual contributions and chemical nature of each residue and water molecule toward ligand binding which would otherwise be difficult to detect without using QM methods. In this chapter, we demonstrate the typical use of FMO to analyze 19 crystal structures of β1 and β2 adrenergic receptors with their corresponding agonists and antagonists.[Abstract] [Full Text] [Related] [New Search]