These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: pH sensitive surfactant-stabilized Fe3O4 magnetic nanocarriers for dual drug delivery. Author: Dutta B, Shetake NG, Barick BK, Barick KC, Pandey BN, Priyadarsini KI, Hassan PA. Journal: Colloids Surf B Biointerfaces; 2018 Feb 01; 162():163-171. PubMed ID: 29190467. Abstract: Highly water-dispersible surfactant-stabilized Fe3O4 magnetic nanocarriers (SMNCs) were prepared by self-assembly of anionic surfactant, sodium dodecyl sulphate (SDS) on hydrophobic (oleic acid coated) nanoparticles and their biomedical applications were investigated. These nanocarriers have an average size of about 10nm and possess tunable surface charge properties. The formation of an organic coating of SDS was evident from infrared spectroscopy, dynamic light scattering, zeta-potential and thermogravimetric measurements. These nanocarriers were used for loading of both hydrophilic and hydrophobic anticancer agents such as doxorubicin hydrochloride (DOX) and curcumin (CUR), respectively. DOX was conjugated onto the surface of nanocarriers through electrostatic interaction, whereas CUR was encapsulated into the hydrophobic interlayer between oleic acid and SDS. The toxicity and cellular internalization of drug loaded nanocarriers were investigated against WEHI-164 cancer cell line. Specifically, the drug loading, pH sensitive drug release and cellular internalization studies suggested that these nanocarriers are suitable for dual drug delivery. Furthermore, they show good heating ability under AC magnetic field, thus can be used as effective heating source for hyperthermia treatment of cancer.[Abstract] [Full Text] [Related] [New Search]