These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: tRNA dynamics between the nucleus, cytoplasm and mitochondrial surface: Location, location, location.
    Author: Chatterjee K, Nostramo RT, Wan Y, Hopper AK.
    Journal: Biochim Biophys Acta Gene Regul Mech; 2018 Apr; 1861(4):373-386. PubMed ID: 29191733.
    Abstract:
    Although tRNAs participate in the essential function of protein translation in the cytoplasm, tRNA transcription and numerous processing steps occur in the nucleus. This subcellular separation between tRNA biogenesis and function requires that tRNAs be efficiently delivered to the cytoplasm in a step termed "primary tRNA nuclear export". Surprisingly, tRNA nuclear-cytoplasmic traffic is not unidirectional, but, rather, movement is bidirectional. Cytoplasmic tRNAs are imported back to the nucleus by the "tRNA retrograde nuclear import" step which is conserved from budding yeast to vertebrate cells and has been hijacked by viruses, such as HIV, for nuclear import of the viral reverse transcription complex in human cells. Under appropriate environmental conditions cytoplasmic tRNAs that have been imported into the nucleus return to the cytoplasm via the 3rd nuclear-cytoplasmic shuttling step termed "tRNA nuclear re-export", that again is conserved from budding yeast to vertebrate cells. We describe the 3 steps of tRNA nuclear-cytoplasmic movements and their regulation. There are multiple tRNA nuclear export and import pathways. The different tRNA nuclear exporters appear to possess substrate specificity leading to the tantalizing possibility that the cellular proteome may be regulated at the level of tRNA nuclear export. Moreover, in some organisms, such as budding yeast, the pre-tRNA splicing heterotetrameric endonuclease (SEN), which removes introns from pre-tRNAs, resides on the cytoplasmic surface of the mitochondria. Therefore, we also describe the localization of the SEN complex to mitochondria and splicing of pre-tRNA on mitochondria, which occurs prior to the participation of tRNAs in protein translation. This article is part of a Special Issue entitled: SI: Regulation of tRNA synthesis and modification in physiological conditions and disease edited by Dr. Boguta Magdalena.
    [Abstract] [Full Text] [Related] [New Search]