These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Elimination of clonogenic tumor cells from HL-60, Daudi, and U-937 cell lines by laser photoradiation therapy: implications for autologous bone marrow purging.
    Author: Gulliya KS, Pervaiz S.
    Journal: Blood; 1989 Mar; 73(4):1059-65. PubMed ID: 2920207.
    Abstract:
    Laser photoradiation therapy was tested in an in vitro model for its efficacy in the elimination of non-Hodgkin's lymphoma cells. Results show that at 31.2 J/cm2 of laser light in the presence of 20 micrograms/mL of merocyanine 540 (MC540) there was greater than 5 log reduction in Burkitt's lymphoma (Daudi) cells. Similar tumor cell kill was obtained for leukemia (HL-60) cells at a laser light dose of 93.6 J/cm2. However, to obtain the same efficiency of killing for histiocytic lymphoma (U-937) cells, a higher dose of MC540 (25 micrograms/mL) was required. Clonogenic tumor stem cell colony formation was reduced by greater than 5 logs after laser photoradiation therapy. Under identical conditions for each cell line the percent survival for granulocyte-macrophage colony-forming units (CFU-GM, 45.9%, 40%, 17.5%), granulocyte/erythroid/macrophage/megakaryocyte (GEMM, 40.1%, 20.1%, 11.5%), colony-forming units (CFU-C, 16.2%, 9.1%, 1.8%), and erythroid burst-forming units (BFU-E, 33.4%, 17.8%, 3.9%) was significantly higher than the tumor cells. Mixing of gamma ray-irradiated normal marrow cells with tumor cells (1:1 and 10:1 ratio) did not interfere with the elimination of tumor cells. The effect of highly purified recombinant interferon alpha (rIFN) on laser photoradiation therapy of tumor cells was also investigated. In the presence of rIFN (30 to 3,000 U/mL), the viability of leukemic cells was observed to increase from 0% to 1.5% with a concurrent decrease in membrane polarization, suggesting an increase in fluidity of cell membrane in response to rIFN. However, at higher doses of rIFN (6,000 to 12,000 U/mL) this phenomenon was not observed. The viability of lymphoma cells remained unaffected at all doses of rIFN tested. These results may have therapeutic relevance in patients undergoing interferon treatment who require bone marrow transplantation, as the complete elimination of tumor cells by marrow-purging procedures may be hampered by this increased survival in the presence of interferon.
    [Abstract] [Full Text] [Related] [New Search]