These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Matrix-Induced Autologous Chondrocyte Implantation (MACI) Using a Cell-Seeded Collagen Membrane Improves Cartilage Healing in the Equine Model. Author: Nixon AJ, Sparks HD, Begum L, McDonough S, Scimeca MS, Moran N, Matthews GL. Journal: J Bone Joint Surg Am; 2017 Dec 06; 99(23):1987-1998. PubMed ID: 29206788. Abstract: BACKGROUND: Autologous chondrocyte implantation (ACI) using a collagen scaffold (matrix-induced ACI; MACI) is a next-generation approach to traditional ACI that provides the benefit of autologous cells and guided tissue regeneration using a biocompatible collagen scaffold. The MACI implant also has inherent advantages including surgical implantation via arthroscopy or miniarthrotomy, the elimination of periosteal harvest, and the use of tissue adhesive in lieu of sutures. This study evaluated the efficacy of the MACI implant in an equine full-thickness cartilage defect model at 1 year. METHODS: Autologous chondrocytes were seeded onto a collagen type-I/III membrane and implanted into one of two 15-mm defects in the femoral trochlear ridge of 24 horses. Control defects either were implanted with cell-free collagen type-I/III membrane (12 horses) or were left ungrafted as empty defects (12 horses). An additional 3 horses had both 15-mm defects remain empty as nonimplanted joints. The repair was scored by second-look arthroscopy (12 weeks), and necropsy examination (53 weeks). Healing was assessed by arthroscopic scoring, gross assessment, histology and immunohistology, cartilage matrix component assay, and gene expression determination. Toxicity was examined by prostaglandin E2 formation in joint fluid, and lymph node morphology combined with histologic screening of organs. RESULTS: MACI-implanted defects had improved gross healing and composite histologic scores, as well as increases in chondrocyte predominance, toluidine blue-stained matrix, and collagen type-II content compared with scaffold-only implanted or empty defects. There was minimal evidence of reaction to the implant in the synovial membrane (minor perivascular cuffing), subchondral bone, or cartilage. There were no adverse clinical effects, signs of organ toxicity, or evidence of chondrocytes or collagen type-I/III membrane in draining lymph nodes. CONCLUSIONS: The MACI implant appeared to improve cartilage healing in a critical-sized defect in the equine model compared with collagen matrix alone. CLINICAL RELEVANCE: These results indicate that the MACI implant is quick to insert, provides chondrocyte security in the defect, and improves cartilage healing compared with ACI.[Abstract] [Full Text] [Related] [New Search]