These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Indoor and outdoor air concentrations of volatile organic compounds and NO2 in schools of urban, industrial and rural areas in Central-Southern Spain.
    Author: Villanueva F, Tapia A, Lara S, Amo-Salas M.
    Journal: Sci Total Environ; 2018 May 01; 622-623():222-235. PubMed ID: 29212055.
    Abstract:
    Thirty two VOCs including alkanes, aromatic hydrocarbons, terpenes and carbonyl compounds together with NO2 were investigated in a kindergarten classroom, a primary classroom and the playground in 18 schools located in rural areas, an urban area (Ciudad Real) and an industrial area (Puertollano) in the province of Ciudad Real in central southern Spain. The most abundant pollutants at schools were the aldehydes formaldehyde and hexanal. After carbonyls, n-dodecane was the most abundant compound in the study areas. The NO2 concentrations were higher in the urban area, followed by industrial area and rural areas. For benzene, its concentration in the industrial area was significantly higher than in the urban and rural areas which reflects the magnitude of the contribution to the indoor air by petrochemical plant during the sampling period. Principal component analysis, indoor/outdoor ratios, multiple linear regressions and Spearman correlation coefficients were used to investigate the origin, the indoor pollutant determinants and to establish common sources between VOCs and NO2. Seven components were extracted from the application of PCA to the indoor measurements accounting for 77.5% of the total variance. The analysis of indoor/outdoor ratios and correlations demonstrated that sources in the indoor environment are prevailing for most of the investigated VOCs. Benzene and n-pentane have a major relevance as outdoor sources, while aldehydes, terpenes, alkanes and most aromatic hydrocarbons as indoor sources. For NO2, ethylbenzene and toluene both indoor and outdoor sources probably contributed to the measured concentrations. Finally, the results reported in this paper demonstrate that during the measuring period there were not great differences in the indoor air quality of the schools of the three study areas.
    [Abstract] [Full Text] [Related] [New Search]