These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Rhythmic arm cycling training improves walking and neurophysiological integrity in chronic stroke: the arms can give legs a helping hand in rehabilitation. Author: Kaupp C, Pearcey GEP, Klarner T, Sun Y, Cullen H, Barss TS, Zehr EP. Journal: J Neurophysiol; 2018 Mar 01; 119(3):1095-1112. PubMed ID: 29212917. Abstract: Training locomotor central pattern-generating networks (CPGs) through arm and leg cycling improves walking in chronic stroke. These outcomes are presumed to result from enhanced interlimb connectivity and CPG function. The extent to which rhythmic arm training activates interlimb CPG networks for locomotion remains unclear and was assessed by studying chronic stroke participants before and after 5 wk of arm cycling training. Strength was assessed bilaterally via maximal voluntary isometric contractions in the legs and hands. Muscle activation during arm cycling and transfer to treadmill walking were assessed in the more affected (MA) and less affected (LA) sides via surface electromyography. Changes to interlimb coupling during rhythmic movement were evaluated using modulation of cutaneous reflexes elicited by electrical stimulation of the superficial radial nerve at the wrist. Bilateral soleus stretch reflexes were elicited at rest and during 1-Hz arm cycling. Clinical function tests assessed walking, balance, and motor function. Results show significant changes in function and neurophysiological integrity. Training increased bilateral grip strength, force during MA plantarflexion, and muscle activation. "Normalization" of cutaneous reflex modulation was found during arm cycling. There was enhanced activity in the dorsiflexor muscles on the MA side during the swing phase of walking. Enhanced interlimb coupling was shown by increased modulation of MA soleus stretch reflex amplitudes during arm cycling after training. Clinical evaluations showed enhanced walking ability and balance. These results are consistent with training-induced changes in CPG function and interlimb connectivity and underscore the need for arm training in the functional rehabilitation of walking after neurotrauma. NEW & NOTEWORTHY It has been suggested but not tested that training the arms may influence rehabilitation of walking due to activation of interneuronal patterning networks after stroke. We show that arm cycling training improves strength, clinical function, coordination of muscle activity during walking, and neurological connectivity between the arms and the legs. The arms can, in fact, give the legs a helping hand in rehabilitation of walking after stroke.[Abstract] [Full Text] [Related] [New Search]