These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Bile salts and hydrodynamics of bile formation. Author: Cotting J, Reichen J. Journal: J Hepatol; 1989 Jan; 8(1):13-21. PubMed ID: 2921500. Abstract: We report a novel method to assess bile secretory pressure using a Statham pressure transducer. The studies were performed in vivo in male Sprague-Dawley rats under pentobarbital anesthesia. Maximal secretory pressure averaged 21.8 +/- 1.1 (S.D.) cmH2O. The bile accumulated after 10 min of obstruction was 7.7 +/- 2.8 microliters.g-1; assuming a basal biliary dead space of 2.3 microliters.g-1, the distended capacity of the biliary tree averaged 10 microliters.g-1. The small volume of the strain gauge permitted calculation of compliance of the biliary tree which averaged 0.35 +/- 0.12 microliters.cmH2O-1.g-1. Stimulation of bile flow by bile salts reduced the time required to reach maximal bile secretory pressure. Taurocholate but not taurodehydrocholate decreased maximal secretory pressure within minutes, the pressure-time curves showing a new equilibrium between bile formation and regurgitation forces. Both bile flow and bile salt recoveries were decreased by taurocholate but not by taurodehydrocholate. Taurocholate decreased biliary compliance while taurodehydrocholate had no effect. This provides further evidence that taurocholate increases the biliary permeability and suggests that this bile salt also affects the elastic properties of the biliary tree.[Abstract] [Full Text] [Related] [New Search]