These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: A Distal Loop Controls Product Release and Chemo- and Regioselectivity in Cytochrome P450 Decarboxylases. Author: Amaya JA, Rutland CD, Leschinsky N, Makris TM. Journal: Biochemistry; 2018 Jan 23; 57(3):344-353. PubMed ID: 29227633. Abstract: Cytochrome P450 OleT utilizes hydrogen peroxide (H2O2) to catalyze the decarboxylation or hydroxylation of fatty acid (FA) substrates. Both reactions are initiated through the abstraction of a substrate hydrogen atom by the high-valent iron-oxo intermediate known as Compound I. Here, we specifically probe the influence of substrate coordination on OleT reaction partitioning through the combined use of fluorescent and electron paramagnetic resonance (EPR)-active FA probes and mutagenesis of a structurally disordered F-G loop that is distal from the heme-iron active site. Both probes are efficiently metabolized by OleT and efficiently trigger the formation of Compound I. Transient fluorescence and EPR reveal a slow product release step, mediated by the F-G loop, that limits OleT turnover. A single-amino acid change or excision of the loop reveals that this region establishes critical interactions to anchor FA substrates in place. The stabilization afforded by the F-G loop is essential for regulating regiospecific C-H abstraction and allowing for efficient decarboxylation to occur. These results highlight a regulatory strategy whereby the fate of activated oxygen species can be controlled at distances far removed from the site of chemistry.[Abstract] [Full Text] [Related] [New Search]