These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Amitriptyline modulated Ca2+ signaling and induced Ca2+-independent cell viability in human osteosarcoma cells.
    Author: Lu T, Chou CT, Liang WZ, Kuo CC, Chen IL, Wang JL, Jan CR.
    Journal: Hum Exp Toxicol; 2018 Feb; 37(2):125-134. PubMed ID: 29233021.
    Abstract:
    Amitriptyline is a widely used tricyclic antidepressant, which acts primarily as a serotonin-norepinephrine reuptake inhibitor. This study examined the effect of amitriptyline on Ca2+ homeostasis and its related mechanism in MG63 human osteosarcoma cells. Amitriptyline evoked cytosolic-free Ca2+ concentrations ([Ca2+]i) rises concentration dependently. Amitriptyline-evoked Ca2+ entry was confirmed by Mn2+-induced quench of fura-2 fluorescence. This entry was inhibited by Ca2+ entry modulators nifedipine, econazole, SKF96365, the protein kinase C (PKC) activator phorbol 12-myristate 13 acetate but was not affected by the PKC inhibitor GF109203X. In Ca2+-free medium, treatment with the endoplasmic reticulum Ca2+ pump inhibitor thapsigargin (TG) inhibited amitriptyline-evoked [Ca2+]i rises by 95%. Conversely, treatment with amitriptyline abolished TG-evoked [Ca2+]i rises. Inhibition of phospholipase C (PLC) with U73122 inhibited amitriptyline-evoked [Ca2+]i rises by 70%. Amitriptyline killed cells at 200-500 μM in a concentration-dependent fashion. Chelating cytosolic Ca2+ with 1,2-bis(2-aminophenoxy)ethane- N, N, N', N'-tetraacetic acid/AM did not reverse amitriptyline-induced cytotoxicity. Collectively, our data suggest that in MG63 cells, amitriptyline induced [Ca2+]i rises by evoking PLC-dependent Ca2+ release from the endoplasmic reticulum and Ca2+ entry via PKC-regulated store-operated Ca2+ entry. Amitriptyline also induced Ca2+-disassociated cell death.
    [Abstract] [Full Text] [Related] [New Search]