These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Inhibiting the Ca2+ Influx Induced by Human CSF. Author: Drews A, De S, Flagmeier P, Wirthensohn DC, Chen WH, Whiten DR, Rodrigues M, Vincke C, Muyldermans S, Paterson RW, Slattery CF, Fox NC, Schott JM, Zetterberg H, Dobson CM, Gandhi S, Klenerman D. Journal: Cell Rep; 2017 Dec 12; 21(11):3310-3316. PubMed ID: 29241555. Abstract: One potential therapeutic strategy for Alzheimer's disease (AD) is to use antibodies that bind to small soluble protein aggregates to reduce their toxic effects. However, these therapies are rarely tested in human CSF before clinical trials because of the lack of sensitive methods that enable the measurement of aggregate-induced toxicity at low concentrations. We have developed highly sensitive single vesicle and single-cell-based assays that detect the Ca2+ influx caused by the CSF of individuals affected with AD and healthy controls, and we have found comparable effects for both types of samples. We also show that an extracellular chaperone clusterin; a nanobody specific to the amyloid-β peptide (Aβ); and bapineuzumab, a humanized monoclonal antibody raised against Aβ, could all reduce the Ca2+ influx caused by synthetic Aβ oligomers but are less effective in CSF. These assays could be used to characterize potential therapeutic agents in CSF before clinical trials.[Abstract] [Full Text] [Related] [New Search]