These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: TNF-α-induced protein 3 (TNFAIP3)/A20 acts as a master switch in TNF-α blockade-driven IL-17A expression.
    Author: Urbano PCM, Aguirre-Gamboa R, Ashikov A, van Heeswijk B, Krippner-Heidenreich A, Tijssen H, Li Y, Azevedo VF, Smits LJT, Hoentjen F, Joosten I, Koenen HJPM.
    Journal: J Allergy Clin Immunol; 2018 Aug; 142(2):517-529. PubMed ID: 29248493.
    Abstract:
    BACKGROUND: Anti-TNF inhibitors successfully improve the quality of life of patients with inflammatory disease. Unfortunately, not all patients respond to anti-TNF therapy, and some patients show paradoxical immune side effects, which are poorly understood. Surprisingly, anti-TNF agents were shown to promote IL-17A production with as yet unknown clinical implications. OBJECTIVE: We sought to investigate the molecular mechanism underlying anti-TNF-driven IL-17A expression and the clinical implications of this phenomenon. METHODS: Fluorescence-activated cell sorting, RNA sequencing, quantitative real-time PCR, Western blotting, small interfering RNA interference, and kinase inhibitors were used to study the molecular mechanisms in isolated human CD4+ T cells from healthy donors. The clinical implication was studied in blood samples of patients with inflammatory bowel disease (IBD) receiving anti-TNF therapy. RESULTS: Here we show that anti-TNF treatment results in inhibition of the anti-inflammatory molecule TNF-α-induced protein 3 (TNFAIP3)/A20 in memory CD4+ T cells. We found an inverse relationship between TNFAIP3/A20 expression levels and IL-17A production. Inhibition of TNFAIP3/A20 promotes kinase activity of p38 mitogen-activated protein kinase and protein kinase C, which drives IL-17A expression. Regulation of TNFAIP3/A20 expression and cognate IL-17A production in T cells are specifically mediated through TNF receptor 2 signaling. Ex vivo, in patients with IBD treated with anti-TNF, we found further evidence for an inverse relationship between TNFAIP3/A20 expression levels and IL-17A-producing T cells. CONCLUSION: Anti-TNF treatment interferes in the TNFAIP3/A20-mediated anti-inflammatory feedback loop in CD4+ T cells and promotes kinase activity. This puts TNFAIP3/A20, combined with IL-17A expression, on the map as a potential tool for predicting therapy responsiveness or side effects of anti-TNF therapy. Moreover, it provides novel targets related to TNFAIP3/A20 activity for superior therapeutic regimens in patients with IBD.
    [Abstract] [Full Text] [Related] [New Search]