These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Chelation by collagen in the immobilization of Aspergillus oryzae β-galactosidase: A potential biocatalyst to hydrolyze lactose by batch processes.
    Author: Gennari A, Mobayed FH, Volpato G, de Souza CFV.
    Journal: Int J Biol Macromol; 2018 Apr 01; 109():303-310. PubMed ID: 29258896.
    Abstract:
    This work is the first study of the immobilization of Aspergillus oryzae β-galactosidase (Gal) on powdered collagen (Col) that had formed a chelate with aluminum (Col-Al-Gal). Other collagen treatments, including those with acetic acid, glutaraldehyde, and a combination of aluminum and glutaraldehyde (Col-Al-Glu-Gal), were also tested. High-yield (superior to 80%) and high-efficiency (superior to 99%) immobilization was obtained for the derivatives Col-Al-Gal and Col-Al-Glu-Gal, even at high protein loads (500-1,000 mg g-1 of support). The storage stability of Gal immobilized on Col-Al and Col-Al-Glu resulted in Gal retaining approximately 60% of its initial activity after 90 days at 4 °C. The half-life values of derivatives Col-Al-Gal and Col-Al-Glu-Gal were higher than those of soluble enzyme at 65, 68, 70, and 73 °C. The derivatives Col-Al-Gal and Col-Al-Glu-Gal retained high enzyme activity in batch hydrolysis of lactose in permeate and lactose solutions for 50 and 60 cycles, respectively. Our results suggest that powdered collagen treated with aluminum, a low-cost support, is a promising support for the immobilization of β-galactosidase.
    [Abstract] [Full Text] [Related] [New Search]