These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Characterization of cellular transport, subcellular distribution, and secretion of the neurotoxicant 1-methyl-4-phenylpyridinium in bovine adrenomedullary cell cultures.
    Author: Reinhard JF, Diliberto EJ, Daniels AJ.
    Journal: J Neurochem; 1989 Apr; 52(4):1253-9. PubMed ID: 2926400.
    Abstract:
    Cultures of bovine adrenomedullary chromaffin cells accumulated 1-[methyl-3H]methyl-4-phenylpyridinium ([3H]MPP+) in a time- and concentration-dependent manner with an apparent Km of 0.7 microM and a Vmax of 3 pmol/min/10(6) cells. The uptake was sodium dependent and sensitive to inhibitors of the cell-surface catecholamine transporter. At low concentrations of MPP+, the subcellular distribution was identical to that of endogenous catecholamines in the catecholamine-containing chromaffin vesicles. However, at a higher concentration of MPP+, a larger proportion of the toxicant was recovered in the cytosolic fraction, with less in the chromaffin vesicle fractions. When cells were prelabeled with [3H]MPP+, at 1 and 300 microM, and then permeabilized with digitonin in the absence of Ca2+, there was a proportionally greater release of MPP+ from the cells labeled at the higher concentration of the toxicant. In the presence of Ca2+, cell permeabilization induced a time-dependent secretion of catecholamines and a parallel secretion of MPP+. Under these conditions, the secretion of endogenous catecholamines was unaffected by the presence of MPP+. When the permeabilization studies were carried out in the presence of tetrabenazine, a massive release of MPP+ was observed in the absence of Ca2+ and was not further increased by Ca2+. In intact cells prelabeled with 300 microM [3H]MPP+, the secretagogues nicotine and veratridine elicited a Ca2+ -dependent secretion of catecholamines and MPP+ from the cells in similar proportions to their cellular contents. Barium-induced release of both species was independent of external Ca2+.(ABSTRACT TRUNCATED AT 250 WORDS)
    [Abstract] [Full Text] [Related] [New Search]