These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The effect of different π-bridge configuration on bi-anchored triphenylamine and phenyl modified triphenylamine based dyes for dye sensitized solar cell (DSSC) application: A theoretical approach. Author: Pounraj P, Mohankumar V, Pandian MS, Ramasamy P. Journal: J Mol Graph Model; 2018 Jan; 79():235-253. PubMed ID: 29272760. Abstract: Twenty eight bi-anchored triphenylamine (TH-1 to TH-14) and phenyl modified triphenylamine (PH-TH-1 to PH-TH-14) based metal free organic dyes are designed for DSSC application. The electronic effect of different π-bridge configurations in donor-π-bridge-acceptor (D-π-A)2 structure was theoretically simulated and verified using density functional theory (DFT) and time dependent density functional theory (TD-DFT). The triphenylamine and phenyl modified triphenylamine groups are used as donor and cyanoacrylic acid group is used as acceptor. Thiophene and cyanovinyl groups are used as π-bridge. The ground state molecular structure was optimized by density functional theory and the electronic absorption spectra were calculated by time dependent density functional theory. The light harvesting efficiency (LHE), dye regeneration energy (ΔGreg) and electron injection energy (ΔGinject) are determined by computational examination. It is observed that, when the number of π-bridge increases, the band gap of the dye decreases. Also the absorption maximum and molar extinction coefficient of the dyes are increased. Theoretical result shows that the thiophene-cyanovinyl and thiophene-thiophene-cyanovinyl-cyanovinyl configurations give broader and red shifted absorption spectrum compared to other configurations. Also the results of phenyl modified triphenylamine (PH-TH) dyes clearly show better absorption and dye regeneration energy compared to TH dyes.[Abstract] [Full Text] [Related] [New Search]