These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Augmentation with potential endophytes enhances phytostabilization of Cr in contaminated soil.
    Author: Ahsan MT, Najam-Ul-Haq M, Saeed A, Mustafa T, Afzal M.
    Journal: Environ Sci Pollut Res Int; 2018 Mar; 25(7):7021-7032. PubMed ID: 29273991.
    Abstract:
    The contamination of soil with heavy metals is a major environmental problem worldwide. The combined use of plants and their associated microbes has gained popularity in recent years for their potential to remediate heavy metal-contaminated soil. In the current study, the effect that augmentation of soil with plant growth-promoting endophytes has on the phytostabilization of chromium (Cr)-contaminated soil was investigated. Three potential endophytic bacterial strains (Enterobacter sp. HU38, Microbacterium arborescens HU33, and Pantoea stewartii ASI11) were inoculated individually as well as in combination to Leptochloa fusca and Brachiaria mutica vegetated in Cr-contaminated soil. The accumulation of Cr in the root and shoot of the plants was determined. Moreover, bacterial persistence in the rhizosphere and endosphere was determined. Augmentation with potential endophytes significantly increased root length (24-45%), shoot height (39-64%), chlorophyll content (20-55%), and the overall biomass (32-61%) of the plants. Although L. fusca and B. mutica showed potential to accumulate Cr in their root and shoot, endophytic augmentation increased uptake, translocation, and accumulation of Cr in the roots and shoots of both plant species. However, L. fusca showed more potential to phytostabilize Cr as compared to B. mutica. Furthermore, the potential endophytes showed more survival and persistence within the roots than in the rhizosphere and shoot interior. This study provides useful evidence of endophyte-assisted phytoremediation to be the most sustainable and affordable approach for in situ remediation of Cr-contaminated soil.
    [Abstract] [Full Text] [Related] [New Search]