These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Molecular dosimetry studies of forward mutation induced at the yg2 locus in maize by ethyl methanesulfonate.
    Author: Schy WE, Plewa MJ.
    Journal: Mutat Res; 1989 Apr; 211(2):231-41. PubMed ID: 2927409.
    Abstract:
    The yg2 assay in Zea mays detects forward mutation in somatic cells within leaf primordia of embryos and it was used in an analysis of the molecular dosimetry of ethyl methanesulfonate (EMS). Parallel genetic and molecular dosimetry experiments were conducted in which the frequency of forward mutation and the level of covalently bound ethyl DNA adducts were determined. Prepared kernels were treated for 8 h at 20 degrees C with 1-10 mM EMS. EMS induced a direct concentration-dependent increase in mutation induction proportional to the exposure concentration (slope = 0.93). The kinetics of mutation induction demonstrated in the intact maize system were consistent with the kinetics observed earlier in in vitro model systems using cultured mammalian cells, and contrasted with the exponential increase in mutation induction characteristic of microbial species. Parallel molecular dosimetry experiments were conducted using [3H]EMS. DNA was extracted and purified from embryonic tissues containing the leaf primordia, the target tissue of the yg2 assay. A linear increase in the molecular dose was observed as a function of EMS concentration. Using concentration as a common parameter between the parallel genetic and dosimetry studies, mutation induction appeared to increase nearly in a direct proportion to the molecular dose. However, studies in other genetic systems indicate that the levels of specific DNA adducts, such as O6-ethylguanine (O6-EtGua) show a better correlation with mutation induction kinetics than molecular dose. Neither molecular dose, nor O6-EtGua levels account for differences in the absolute frequencies of mutation induction observed in different genetic systems. Therefore, reliable assessment of health risks posed to humans by chemical mutagens appears to require consideration of other factors in addition to DNA dose or adduct formation, including differences in repair capabilities and in the size of the genetic targets in humans relative to the model genetic systems under study.
    [Abstract] [Full Text] [Related] [New Search]