These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Overexpression of miR-1290 contributes to cell proliferation and invasion of non small cell lung cancer by targeting interferon regulatory factor 2.
    Author: Jin JJ, Liu YH, Si JM, Ni R, Wang J.
    Journal: Int J Biochem Cell Biol; 2018 Feb; 95():113-120. PubMed ID: 29275213.
    Abstract:
    MicroRNAs are small endogenous non-coding RNAs, which can frequently emerge as regulators in many cancer types. MiR-1290 was found to be abnormally elevated in non small cell lung cancer (NSCLC). However, the underlying molecular mechanism still needs to be investigated. Here, we demonstrated that miR-1290 expression levels were remarkably upregulated in NSCLC tissues compared to adjacent normal tissues. Higher miR-1290 expression levels positively associated with lymph node metastasis and advanced tumor stage. Functional assays showed that upregulated miR-1290 expression in NSCLC cells enhanced cell proliferation, cell colony formation and invasion capacities in vitro. Furthermore, we found that miR-1290 promoted cell proliferation related protein CDK2 and CDK4 expression and enhanced Epithelial-Mesenchymal Transition (EMT) process by downregulating E-cadherin expression and upregulating N-cadherin expression. Bioinformatics analysis and luciferase reporter gene assays revealed that Interferon regulatory factor 2 (IRF2) was a direct target of miR-1290. Overexpression of miR-1290 can degrade IRF2 mRNA and downregulated IRF2 protein expression in NSCLC cells. Upregulated IRF2 could partly rescue the promoting effects induced by miR-1290 overexpression on cell proliferation and invasion of NSCLC. Additionally, we confirmed that reduced miR-1290 expression could suppress tumor growth using a tumor xenograft model in vivo. Thus, we concluded that miR-1290 may serve as a potential target of NSCLC treatment.
    [Abstract] [Full Text] [Related] [New Search]