These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Metformin ameliorates activation of hepatic stellate cells and hepatic fibrosis by succinate and GPR91 inhibition.
    Author: Nguyen G, Park SY, Le CT, Park WS, Choi DH, Cho EH.
    Journal: Biochem Biophys Res Commun; 2018 Jan 22; 495(4):2649-2656. PubMed ID: 29278707.
    Abstract:
    BACKGROUND: Chronic liver disease is becoming a major cause of morbidity and mortality worldwide. During liver injury, hepatic stellate cells (HSCs) trans-differentiate into activated myofibroblasts, which produce extracellular matrix. Succinate and succinate receptor (G-protein coupled receptor91, GPR91) signaling pathway has now emerged as a regulator of metabolic signaling. A previous study showed that succinate and its specific receptor, GPR91, are involved in the activation of HSCs and the overexpression of α-smooth muscle actin (α-SMA). Metformin, a well-known anti-diabetic drug, inhibits hepatic gluconeogenesis in the liver. Many studies have shown that metformin not only prevented, but also reversed, steatosis and inflammation in a nonalcoholic steatohepatitis (NASH) animal model. However, the role of metformin in HSC activation and succinate-GPR91 signaling has not been clarified. METHODS: The immortalized human HSCs, LX-2 cells, were used for the in vitro study. For the in vivo study, male C57BL/J6 mice were randomly divided into 3 groups and were fed with a methionine-choline-deficient diet (MCD diet group) as a nonalcoholic steatohepatitis (NASH) mouse model with or without 0.1% metformin for 12 weeks, or were fed a control methionine-choline-sufficient diet (MCS diet group). RESULTS: In our study, metformin and 5-aminoimidazole-4-carboxamide 1-β-d-ribofuranoside (AICAR), which is an analog of adenosine monophosphate, were shown to suppress α-SMA expression via enhanced phosphorylation of AMP-activated protein kinase (AMPK) and inhibition of succinate-GPR91 signaling in activated LX-2 cells induced by palmitate- or succinate. Metformin and AICAR also reduced succinate concentration in the cell lysates when LX-2 cells were treated with palmitate. Moreover, metformin and AICAR reduced interleukin-6 and, transforming growth factor-β1 production in succinate-treated LX-2 cells. Both metformin and AICAR inhibited succinate-stimulated HSC proliferation and cell migration. Mice fed a MCD diet demonstrated increased steatohepatitis and liver fibrosis compared to that of mice fed control diet. Metformin ameliorated steatohepatitis, liver fibrosis, inflammatory cytokine production and decreased α -SMA and GPR91expression in the livers of the MCD diet-fed mice. CONCLUSION: This study shows that metformin can attenuate activation of HSCs by activating the AMPK pathway and inhibiting the succinate-GPR91 pathway. Metformin has therapeutic potential for treating steatohepatitis and liver fibrosis.
    [Abstract] [Full Text] [Related] [New Search]