These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Distribution and fate modeling of 4-nonylphenol, 4-t-octylphenol, and bisphenol A in the Yong River of China.
    Author: Cheng JR, Wang K, Yu J, Yu ZX, Yu XB, Zhang ZZ.
    Journal: Chemosphere; 2018 Mar; 195():594-605. PubMed ID: 29278849.
    Abstract:
    In this study, the concentrations of 4-nonylphenol (4-NP), 4-tert-octylphenol (4-t-OP), and bisphenol A (BPA) in the water column of the Yong River were investigated and found to be in the range of 140-3948, 6-828, and 15-1415 ng L-1, respectively. A fate and transport model coupled with the Water Quality Analysis Simulation Program (WASP) was developed. After model calibration and validation, the distributions of 4-NP, 4-t-OP, and BPA in the Yong River were modeled for the duration of 2015. The total contaminant loads from the upstream boundary, four tributaries and two wastewater treatment plants were determined to be 2318 kg yr-1 for 4-NP, 506 kg yr-1 for 4-t-OP, and 970 kg yr-1 for BPA. Both measured and modeled results reported higher concentrations of the selected contaminants near river confluences and at the outfalls of the wastewater treatment plants. Peak concentrations were found to always appear in months with relatively reduced precipitation. The influences of adsorption and degradation on the dissolved concentrations of the selected chemicals were also modeled. The combined effects of adsorption and degradation were found to reduce dissolved concentrations of 4-NP, 4-t-OP, and BPA by 17.9%, 30.7%, and 12.1%, respectively. Adsorption was shown to reduce 4-NP concentrations in the Yong River more than degradation. Conversely, adsorption and degradation caused almost equal reductions in the dissolved concentrations of 4-t-OP and degradation caused larger decreases than adsorption in the dissolved concentrations of BPA.
    [Abstract] [Full Text] [Related] [New Search]