These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: High-Mobility and Hysteresis-Free Flexible Oxide Thin-Film Transistors and Circuits by Using Bilayer Sol-Gel Gate Dielectrics.
    Author: Jo JW, Kim KH, Kim J, Ban SG, Kim YH, Park SK.
    Journal: ACS Appl Mater Interfaces; 2018 Jan 24; 10(3):2679-2687. PubMed ID: 29280381.
    Abstract:
    In this paper, we demonstrate high-performance and hysteresis-free solution-processed indium-gallium-zinc oxide (IGZO) thin-film transistors (TFTs) and high-frequency-operating seven-stage ring oscillators using a low-temperature photochemically activated Al2O3/ZrO2 bilayer gate dielectric. It was found that the IGZO TFTs with single-layer gate dielectrics such as Al2O3, ZrO2, or sodium-doped Al2O3 exhibited large hysteresis, low field-effect mobility, or unstable device operation owing to the interfacial/bulk trap states, insufficient band offset, or a substantial number of mobile ions present in the gate dielectric layer, respectively. To resolve these issues and to explain the underlying physical mechanisms, a series of electrical analyses for various single- and bilayer gate dielectrics was carried out. It is shown that compared to single-layer gate dielectrics, the Al2O3/ZrO2 gate dielectric exhibited a high dielectric constant of 8.53, low leakage current density (∼10-9 A cm-2 at 1 MV cm-1), and stable operation at high frequencies. Using the photochemically activated Al2O3/ZrO2 gate dielectric, the seven-stage ring oscillators operating at an oscillation frequency of ∼334 kHz with a propagation delay of <216 ns per stage were successfully demonstrated on a polymeric substrate.
    [Abstract] [Full Text] [Related] [New Search]