These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Redesigning the Coumarin Scaffold into Small Bright Fluorophores with Far-Red to Near-Infrared Emission and Large Stokes Shifts Useful for Cell Imaging.
    Author: Gandioso A, Bresolí-Obach R, Nin-Hill A, Bosch M, Palau M, Galindo A, Contreras S, Rovira A, Rovira C, Nonell S, Marchán V.
    Journal: J Org Chem; 2018 Feb 02; 83(3):1185-1195. PubMed ID: 29283264.
    Abstract:
    Among the palette of previously described fluorescent organic molecules, coumarins are ideal candidates for developing cellular and molecular imaging tools due to their high cell permeability and minimal perturbation of living systems. However, blue-to-cyan fluorescence emission is usually difficult in in vivo applications due to the inherent toxicity and poor tissue penetration of short visible light wavelengths. Here, we introduce a new family of coumarin-based fluorophores, nicknamed COUPY, with promising photophysical properties, including emission in the far-red/near-infrared (NIR) region, large Stokes shifts, high photostability, and excellent brightness. COUPY fluorophores were efficiently synthesized in only three linear synthetic steps from commercially available precursors, with the N-alkylation of a pyridine moiety being the key step at the end of the synthetic route, as it allows for the tuning of the photophysical properties of the resulting dye. Owing to their low molecular weights, COUPY dyes show excellent cell permeability and accumulate selectively in nucleoli and/or mitochondria of HeLa cells, as their far-red/NIR fluorescence emission is easily detected at a concentration as low as 0.5 μM after an incubation of only 20 min. We anticipate that these coumarin scaffolds will open a way to the development of novel coumarin-based far-red to NIR emitting fluorophores with potential applications for organelle imaging and biomolecule labeling.
    [Abstract] [Full Text] [Related] [New Search]