These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Multiple mechanistic action of Rosmarinus officinalis L. extract against ethanol effects in an acute model of intestinal damage.
    Author: Amaral GP, Dobrachinski F, de Carvalho NR, Barcelos RP, da Silva MH, Lugokenski TH, Dias GRM, de Lima Portella R, Fachinetto R, Soares FAA.
    Journal: Biomed Pharmacother; 2018 Feb; 98():454-459. PubMed ID: 29287192.
    Abstract:
    The high levels of oxidative stress and inflammation can be present in the etiology of degenerative intestinal pathologies associated with ethanol ingestion. The Rosmarinus officinalis L. has exhibited several physiological and medicinal activities. In this investigation, we intended to clarify, for the first time, the antioxidant and anti-inflammatory effects of ethanolic extract of Rosmarinus officinalis L. (eeRo) against an acute damage induced by ethanol, specifically in the small intestine of rats. The rats were treated three times, at every 24 h, with eeRo at 500-1000 mg/kg or vehicle, oral gavage. All groups got a single dose of ethanol (2 ml/kg), oral gavage, after 36 h of fasting and 1 h after the last dose of eeRo or vehicle administration. We performed the mensuration of oxidative stress profile in lipid peroxidation in serum and intestine; Na+/K+ ATPase, catalase, and superoxide dismutase activities assays only in intestine; and anti-inflammatory evidences of eeRo in myeloperoxidase activity assay only in the intestine. The eeRo was able to protect the animals against the lipid peroxidation in serum and intestine. It prevented the reduction in Na+/K+ ATPase and catalase levels induced by ethanol in the intestine. In addition, eeRo increased the superoxide dismutase activity when compared to control and protected the intestine against elevations in myeloperoxidase activity caused by ethanol. Our results suggested that eeRo exerted a significant intestinal protective effect by antioxidant and anti-inflammatory mechanisms. Thus, the eeRo represented a promising agent against intestinal lesions induced by ethanol.
    [Abstract] [Full Text] [Related] [New Search]