These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: A novel mutation of the EYA4 gene associated with post-lingual hearing loss in a proband is co-segregating with a novel PAX3 mutation in two congenitally deaf family members.
    Author: Cesca F, Bettella E, Polli R, Cama E, Scimemi P, Santarelli R, Murgia A.
    Journal: Int J Pediatr Otorhinolaryngol; 2018 Jan; 104():88-93. PubMed ID: 29287889.
    Abstract:
    OBJECTIVES: This work was aimed at establishing the molecular etiology of hearing loss in a 9-year old girl with post-lingual non-syndromic mild sensorineural hearing loss with a complex family history of clinically heterogeneous deafness. METHODS: The proband's DNA was subjected to NGS analysis of a 59-targeted gene panel, with the use of the Ion Torrent PGM platform. Conventional Sanger sequencing was used for segregation analysis in all the affected relatives. The proband and all the other hearing impaired members of the family underwent a thorough clinical and audiological evaluation. RESULTS: A new likely pathogenic mutation in the EYA4 gene (c.1154C > T; p.Ser385Leu) was identified in the proband and in her 42-year-old father with post-lingual non-syndromic profound sensorineural hearing loss. The EYA4 mutation was also found in the proband's grandfather and uncle, both showing clinical features of Waardenburg syndrome type 1. A novel pathogenic splice-site mutation (c.321+1G > A) of the PAX3 gene was found to co-segregate with the EYA4 mutation in these two subjects. CONCLUSION: The identified novel EYA4 mutation can be considered responsible of the hearing loss observed in the proband and her father, while a dual molecular diagnosis was reached in the relatives co-segregating the EYA4 and the PAX3 mutations. In these two subjects the DFNA10 phenotype was masked by Waardenburg syndrome. The use of NGS targeted gene-panel, in combination with an extensive clinical and audiological examination led us to identify the genetic cause of the hearing loss in members of a family in which different forms of autosomal dominant deafness segregate. These results provide precise and especially important prognostic and follow-up information for the future audiologic management in the youngest affected member.
    [Abstract] [Full Text] [Related] [New Search]