These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The 3'-end region of the human PDGFR-β core promoter nuclease hypersensitive element forms a mixture of two unique end-insertion G-quadruplexes. Author: Onel B, Carver M, Agrawal P, Hurley LH, Yang D. Journal: Biochim Biophys Acta Gen Subj; 2018 Apr; 1862(4):846-854. PubMed ID: 29288770. Abstract: BACKGROUND: While the most stable G-quadruplex formed in the human PDGFR-β promoter nuclease hypersensitive element (NHE) is the 5'-mid G-quadruplex, the 3'-end sequence that contains a 3'-GGA run forms a less stable G-quadruplex. Recently, the 3'-end G-quadruplex was found to be a transcriptional repressor and can be selectively targeted by a small molecule for PDGFR-β downregulation. METHOD: We use 1D and 2D high-field NMR, in combination with Dimethylsulfate Footprinting, Circular Dichroism Spectroscopy, and Electrophoretic Mobility Shift Assay. RESULTS: We determine that the PDGFR-β extended 3'-end NHE sequence forms two novel end-insertion intramolecular G-quadruplexes that co-exist in equilibrium under physiological salt conditions. One G-quadruplex has a 3'-non-adjacent flanking guanine inserted into the 3'-external tetrad (3'-insertion-G4), and another has a 5'-non-adjacent flanking guanine inserted into the 5'-external tetrad (5'-insertion-G4). The two guanines in the GGA-run move up or down within the G-quadruplex to accommodate the inserted guanine. Each end-insertion G-quadruplex has a low thermal stability as compared to the 5'-mid G-quadruplex, but the selective stabilization of GSA1129 shifts the equilibrium toward the 3'-end G-quadruplex in the PDGFR-β NHE. CONCLUSION: An equilibrium mixture of two unique end-insertion intramolecular G-quadruplexes forms in the PDGFR-β NHE 3'-end sequence that contains a GGA-run and non-adjacent guanines in both the 3'- and 5'- flanking segments; the novel end-insertion structures of the 3'-end G-quadruplex are selectively stabilized by GSA1129. GENERAL SIGNIFICANCE: We show for the first time that an equilibrium mixture of two unusual end-insertion G-quadruplexes forms in a native promoter sequence and appears to be the molecular recognition for PDGFR-β downregulation.[Abstract] [Full Text] [Related] [New Search]