These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: De novo assembling and primary analysis of genome and transcriptome of gray whale Eschrichtius robustus. Author: Moskalev AА, Kudryavtseva AV, Graphodatsky AS, Beklemisheva VR, Serdyukova NA, Krutovsky KV, Sharov VV, Kulakovskiy IV, Lando AS, Kasianov AS, Kuzmin DA, Putintseva YA, Feranchuk SI, Shaposhnikov MV, Fraifeld VE, Toren D, Snezhkina AV, Sitnik VV. Journal: BMC Evol Biol; 2017 Dec 28; 17(Suppl 2):258. PubMed ID: 29297306. Abstract: BACKGROUND: Gray whale, Eschrichtius robustus (E. robustus), is a single member of the family Eschrichtiidae, which is considered to be the most primitive in the class Cetacea. Gray whale is often described as a "living fossil". It is adapted to extreme marine conditions and has a high life expectancy (77 years). The assembly of a gray whale genome and transcriptome will allow to carry out further studies of whale evolution, longevity, and resistance to extreme environment. RESULTS: In this work, we report the first de novo assembly and primary analysis of the E. robustus genome and transcriptome based on kidney and liver samples. The presented draft genome assembly is complete by 55% in terms of a total genome length, but only by 24% in terms of the BUSCO complete gene groups, although 10,895 genes were identified. Transcriptome annotation and comparison with other whale species revealed robust expression of DNA repair and hypoxia-response genes, which is expected for whales. CONCLUSIONS: This preliminary study of the gray whale genome and transcriptome provides new data to better understand the whale evolution and the mechanisms of their adaptation to the hypoxic conditions.[Abstract] [Full Text] [Related] [New Search]