These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Effect of multiple allelic combinations of genes on regulating grain size in rice. Author: Ngangkham U, Samantaray S, Yadav MK, Kumar A, Chidambaranathan P, Katara JL. Journal: PLoS One; 2018; 13(1):e0190684. PubMed ID: 29304121. Abstract: The grain size is one of the complex trait of rice yield controlled by a plethora of interaction of several genes in different pathways. The present study was undertaken to investigate the influence of seven known grain size regulating genes: DEP1, GS7, GS3, GW8, GL7, GS5 and GW2. A wide phenotypic variation for grain length, grain width and grain length-width ratio were observed in 89 germplasm. The correlation analysis showed a strong association among these three grain traits viz. GL, GW, GLWR and TGW which play important roles in determining the final rice grain size. Except for GW2, all six genes showed strong association with grain size traits. A total of 21 alleles were identified with an average of 2.1 allele/locus in 89 germplasm of which seven alleles were found to be favourable alleles for improving the grain size with the frequency range of 24 (26.97%) to 82 (92.13%); the largest was found in GS5 followed by GW8, GL7, DEP1, GS3 and GS7 genes. Through ANOVA, four markers (GS3-PstI, S9, GID76 and GID711) of three genes (GS3, DEP1 and GL7) were found significantly associated with all the three traits (GL, GLWR and TGW). Concurrent results of significant associations of grain size traits with other markers were observed in both analysis of variance and genetic association through the general linear model. Besides, the population structure analysis, cluster analysis and PCoA divided the entire germplasm into three sub-groups with the clear-cut demarcation of long and medium grain types. The present results would help in formulating strategies by selecting suitable candidate markers/genes for obtaining preferred grain shape/size and improving grain yield through marker-assisted breeding.[Abstract] [Full Text] [Related] [New Search]