These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Mineralization of organic pollutants by anodic oxidation using reactive electrochemical membrane synthesized from carbothermal reduction of TiO2. Author: Trellu C, Coetsier C, Rouch JC, Esmilaire R, Rivallin M, Cretin M, Causserand C. Journal: Water Res; 2018 Mar 15; 131():310-319. PubMed ID: 29306202. Abstract: Reactive Electrochemical Membrane (REM) prepared from carbothermal reduction of TiO2 is used for the mineralization of biorefractory pollutants during filtration operation. The mixture of Ti4O7 and Ti5O9 Magnéli phases ensures the high reactivity of the membrane for organic compound oxidation through •OH mediated oxidation and direct electron transfer. In cross-flow filtration mode, convection-enhanced mass transport of pollutants can be achieved from the high membrane permeability (3300 LMH bar-1). Mineralization efficiency of oxalic acid, paracetamol and phenol was assessed as regards to current density, transmembrane pressure and feed concentration. Unprecedented high removal rates of total organic carbon and mineralization current efficiency were achieved after a single passage through the REM, e.g. 47 g m-2 h-1 - 72% and 6.7 g m-2 h-1 - 47% for oxalic acid and paracetamol, respectively, at 15 mA cm-2. However, two mechanisms have to be considered for optimization of the process. When the TOC flux is too high with respect to the current density, aromatic compounds polymerize in the REM layer where only direct electron transfer occurs. This phenomenon decreases the oxidation efficiency and/or increases REM fouling. Besides, O2 bubbles sweeping at high permeate flux promotes O2 gas generation, with adverse effect on oxidation efficiency.[Abstract] [Full Text] [Related] [New Search]