These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Large area growth of MoTe2 films as high performance counter electrodes for dye-sensitized solar cells.
    Author: Hussain S, Patil SA, Vikraman D, Mengal N, Liu H, Song W, An KS, Jeong SH, Kim HS, Jung J.
    Journal: Sci Rep; 2018 Jan 08; 8(1):29. PubMed ID: 29311582.
    Abstract:
    A cost effective and efficient alternative counter electrode (CE) to replace commercially existing platinum (Pt)-based CEs for dye-sensitized solar cells (DSSCs) is necessary to make DSSCs competitive. Herein, we report the large-area growth of molybdenum telluride (MoTe2) thin films by sputtering-chemical vapor deposition (CVD) on conductive glass substrates for Pt-free CEs of DSSCs. Cyclic voltammetry (CV), Tafel curve analysis, and electrochemical impedance spectroscopy (EIS) results showed that the as-synthesized MoTe2 exhibited good electrocatalytic properties and a low charge transfer resistance at the electrolyte-electrode interface. The optimized MoTe2 CE revealed a high power conversion efficiency of 7.25% under a simulated solar illumination of 100 mW cm-2 (AM 1.5), which was comparable to the 8.15% observed for a DSSC with a Pt CE. The low cost and good electrocatalytic properties of MoTe2 thin films make them as an alternative CE for DSSCs.
    [Abstract] [Full Text] [Related] [New Search]