These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Radiation-induced strand breaks in phi X174 replicative form DNA: an improved experimental and theoretical approach.
    Author: van Touw JH, Verberne JB, Retèl J, Loman H.
    Journal: Int J Radiat Biol Relat Stud Phys Chem Med; 1985 Oct; 48(4):567-78. PubMed ID: 2931392.
    Abstract:
    To determine the yield of radiation-induced single-strand, double-strand and potential breaks (breaks which are converted into actual breaks by alkali or heat treatment) oxygenated aqueous solutions of phi X174 supercoiled circular double-stranded (RFI) DNA were irradiated with increasing doses of gamma-irradiation and subjected to electrophoresis on agarose gels both before and after heat treatment. A complete separation was obtained of RFI, RFII (relaxed circle due to one or more single-strand breaks) and RFIII (linear DNA due to one double-strand break). A computer-assisted spectrophotometric procedure was developed, which enabled us to measure very accurately the amount of DNA present in the three DNA fractions. The quantitative changes of each fraction of DNA with dose could be fitted to a straightforward statistical model, which described the dose-dependent formation of the different types of breaks and from which the D37-values of single-strand, potential single-strand and double-strand breaks could be calculated to be 0.42 +/- 0.02, 1.40 +/- 0.25 and 57 +/- 36 Gy respectively. Potential double-strand breaks were not formed significantly under our conditions. In addition the maximum distance between two independently introduced single-strand breaks in opposite strands resulting in a double-strand break could be determined. The values before and after heat treatment are shown to be 29 +/- 6 and 102 +/- 13 nucleotides, respectively.
    [Abstract] [Full Text] [Related] [New Search]