These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Effect of H-Bond Donor Lipids on Phosphatidylinositol-3,4,5-Trisphosphate Ionization and Clustering.
    Author: Graber ZT, Thomas J, Johnson E, Gericke A, Kooijman EE.
    Journal: Biophys J; 2018 Jan 09; 114(1):126-136. PubMed ID: 29320679.
    Abstract:
    The phosphoinositide, phosphatidylinositol-3,4,5-trisphosphate (PI(3,4,5)P3), is a key signaling lipid in the inner leaflet of the cell plasma membrane, regulating diverse signaling pathways including cell growth and migration. In this study we investigate the impact of the hydrogen-bond donor lipids phosphatidylethanolamine (PE) and phosphatidylinositol (PI) on the charge and phase behavior of PI(3,4,5)P3. PE and PI can interact with PI(3,4,5)P3 through hydrogen-bond formation, leading to altered ionization behavior and charge distribution within the PI(3,4,5)P3 headgroup. We quantify the altered PI(3,4,5)P3 ionization behavior using a multistate ionization model to obtain micro-pKa values for the ionization of each phosphate group. The presence of PE leads to a decrease in the pKa values for the initial deprotonation of PI(3,4,5)P3, which describes the removal of the first proton of the three protons remaining at the phosphomonoester groups at pH 4.0. The decrease in these micro-pKa values thus leads to a higher charge at low pH. Additionally, the charge distribution changes lead to increased charge on the 3- and 5-phosphates. In the presence of PI, the final deprotonation of PI(3,4,5)P3 is delayed, leading to a lower charge at high pH. This is due to a combination of hydrogen-bond formation between PI and PI(3,4,5)P3, and increased surface charge due to the addition of the negatively charged PI. The interaction between PI and PI(3,4,5)P3 leads to the formation of PI and PI(3,4,5)P3-enriched domains within the membrane. These domains may have a critical impact on PI(3,4,5)P3-signaling. We also reevaluate results for all phosphatidylinositol bisphosphates as well as for PI(4,5)P2 in complex lipid mixtures with the multistate ionization model.
    [Abstract] [Full Text] [Related] [New Search]