These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: MicroRNA-519d-3p Inhibits Proliferation and Promotes Apoptosis by Targeting HIF-2α in Cervical Cancer Under Hypoxic Conditions.
    Author: Jiang L, Shi S, Shi Q, Zhang H, Xia Y, Zhong T.
    Journal: Oncol Res; 2018 Aug 23; 26(7):1055-1062. PubMed ID: 29321085.
    Abstract:
    HIF-2α knockdown inhibits proliferation, arrests the cell cycle, and promotes apoptosis and autophagy under hypoxic conditions in cervical cancer. However, the upstream regulatory mechanism of HIF-2α expression is unclear. MicroRNAs (miRNAs) degrade target mRNAs by binding to the 3'-untranslated region of mRNAs. In this study, we investigated the role of miRNAs in the regulation of HIF-2α expression in cervical cancer under hypoxic conditions. miRNAs regulating HIF-2α expression were predicted using TargetScan and miRanda and were determined in cervical cancer under hypoxic conditions by qRT-PCR. Additionally, the targeted regulation of HIF-2α by miR-519d-3p was evaluated by Western blot and luciferase reporter assays. Effects of miR-519d-3p and HIF-2α on cell proliferation, cell cycle, and apoptosis were analyzed by CCK-8 and flow cytometry assays, respectively. miR-106a-5p, miR-17-5p, miR-519d-3p, miR-526b-3p, and miR-20b-5p are potentially regulatory miRNAs that bound to the HIF-2α 3'-untranslated region as per TargetScan and miRanda predictions. Expression of the five miRNAs was inhibited in HeLa cells under hypoxic conditions compared to normoxic conditions, and the expression of miR-519d-3p was lower than that of other miRNAs. Luciferase reporter assays showed that HIF-2α was a target of miR-519d-3p. Additionally, miR-519d-3p overexpression inhibited cell proliferation, arrested the cell cycle transition from the G1 stage to the S stage, and promoted cell apoptosis under hypoxic conditions in cervical cancer. HIF-2α overexpression partially reversed the effect of miR-519d-3p. In conclusion, miR-519d-3p overexpression suppressed proliferation, inhibited the cell cycle, and promoted apoptosis of HeLa cells by targeting HIF-2α under hypoxic conditions.
    [Abstract] [Full Text] [Related] [New Search]