These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The influence of algal organic matter produced by Microcystis aeruginosa on coagulation-ultrafiltration treatment of natural organic matter. Author: Xu J, Zhao Y, Gao B, Han S, Zhao Q, Liu X. Journal: Chemosphere; 2018 Apr; 196():418-428. PubMed ID: 29324383. Abstract: Cyanobacterial bloom causes the release of algal organic matter (AOM), which inevitably affects the treatment processes of natural organic matter (NOM). This study works on treating micro-polluted surface water (SW) by emerging coagulant, namely titanium sulfate (Ti(SO4)2), followed by Low Pressure Ultrafiltration (LPUF) technology. In particular, we explored the respective influence of extracellular organic matter (EOM) and intracellular organic matter (IOM) on synergetic EOM-NOM/IOM-NOM removal, functional mechanisms and subsequent filtration performance. Results show that the IOM inclusion in surface water body facilitated synergic IOM-NOM composite pollutants removal by Ti(SO4)2, wherein loosely-aggregated flocs were produced, resulting in floc cake layer with rich porosity and permeability during LPUF. On the contrary, the surface water invaded by EOM pollutants increased Ti(SO4)2 coagulation burden, with substantially deteriorated both UV254-represented and dissolved organic matter (DOC) removal. Corresponded with the weak Ti(SO4)2 coagulation for EOM-NOM removal was the resultant serious membrane fouling during LPUF procedure, wherein dense cake layer was formed due to the compact structure of flocs. Although the IOM enhanced NOM removal with reduced Ti(SO4)2 dose and yielded mitigated membrane fouling, larger percentage of irreversible fouling was seen than NOM and EOM-NOM cases, which was most likely due to the substances with small molecular weight, such as microcystin, adhering in membrane pores. This research would provide theoretical basis for dose selection and process design during AOM-NOM water treatment.[Abstract] [Full Text] [Related] [New Search]