These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: An iridium (III) complex as potent anticancer agent induces apoptosis and autophagy in B16 cells through inhibition of the AKT/mTOR pathway.
    Author: Tang B, Wan D, Wang YJ, Yi QY, Guo BH, Liu YJ.
    Journal: Eur J Med Chem; 2018 Feb 10; 145():302-314. PubMed ID: 29331753.
    Abstract:
    A new ligand THPDP (THPDP = 11-(6,7,8,9-tetrahydrophenazin-2-yl)dipyrido[3,2-a:2',3'-c]phenazine) and its iridium(III) complex [Ir(ppy)2(THPDP)]PF6 (Ir-1) was synthesized and characterized by elemental analysis, IR, ESI-MS, 1H NMR and 13C NMR. The cytotoxicity in vitro of the complex against cancer cells B16, A549, Eca-109, SGC-7901, BEL-7402 and normal NIH 3T3 cell lines was evaluated using MTT method. The IC50 values of the complex toward B16, A549 and Eca-109 cells are 1.0 ± 0.02, 1.4 ± 0.03 and 1.6 ± 0.06 μM, respectively. The apoptosis was investigated with AO/EB and DAPI staining methods. The complex shows strong ability to inhibit the cell growth in B16, A549 and Eca-109 cells. Ir-1 can induce apoptosis, increase the intracellular ROS level, and cause a decrease in the mitochondrial membrane potential. The intracellular Ca2+ level and the release of cytochrome c were studied under a fluorescent microscope. The cell invasion and autophagy were also performed, and the cell cycle arrest was assayed by flow cytometry. The expression of Bcl-2 family proteins, PI3K, AKT, mTOR, P-mTOR was investigated by western blot. The results show that the complex induces apoptosis through ROS-mediated mitochondria dysfunction and inhibition of AKT/mTOR pathways. These findings are helpful for design and synthesis of iridium(III) complexes as potent anticancer drugs.
    [Abstract] [Full Text] [Related] [New Search]