These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Load-Power Relationship During a Countermovement Jump: A Joint Level Analysis. Author: Williams KJ, Chapman DW, Phillips EJ, Ball NB. Journal: J Strength Cond Res; 2018 Apr; 32(4):955-961. PubMed ID: 29334580. Abstract: Williams, KJ, Chapman, DW, Phillips, EJ, and Ball, N. Load-power relationship during a countermovement jump: A joint level analysis. J Strength Cond Res 32(4): 955-961, 2018-This study aimed to investigate whether hip, knee, and ankle peak power is influenced by the relative load lifted, altering the joint and system load-power relationship during a countermovement jump (CMJ). Twenty-three male national representative athletes (age: 20.3 ± 3.1 years, squat 1 repetition maximum [1RM]: 133.8 ± 24.8 kg) completed 3 CMJs at relative barbell loads of 0, 10, 20, 30, and 40% of an athlete's estimated back squat 1RM. Ground reaction force and joint kinematics were captured using a 16 camera motion capture array integrated with 2 in-ground triaxial force plates. Hip ((Equation is included in full-text article.)= 20%, range 0 > 40%), knee ((Equation is included in full-text article.)= 0%, 0 > 20%), and ankle ((Equation is included in full-text article.)= 40%, 0 > 40%) peak power was maximized at different percentages of absolute strength, with an athlete-dependent variation in load-power profiles observed across all lower-body joints. A decrease in system (body + barbell mass) peak power was significantly (p ≤ 0.05, r = 0.45) correlated with a reduction in knee peak power. Timing of instantaneous system and hip peak power occurred significantly closer to toe-off as load increased. The findings highlight that the generation and translation of lower-body joint power is influenced by external load and athlete-dependent traits. This subsequently alters the load-power profile at a system level, explaining the broad spectrums of loads reported to optimize system power during a CMJ. When training, we recommend that a combination of barbell loads based on assorted percentages of the estimated 1RM be prescribed to optimize joint and system power during a CMJ.[Abstract] [Full Text] [Related] [New Search]