These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: A 6-week warm-up injury prevention programme results in minimal biomechanical changes during jump landings: a randomized controlled trial.
    Author: Taylor JB, Ford KR, Schmitz RJ, Ross SE, Ackerman TA, Shultz SJ.
    Journal: Knee Surg Sports Traumatol Arthrosc; 2018 Oct; 26(10):2942-2951. PubMed ID: 29340745.
    Abstract:
    PURPOSE: To examine the extent to which an ACL injury prevention programme modifies lower extremity biomechanics during single- and double-leg landing tasks in both the sagittal and frontal plane. It was hypothesized that the training programme would elicit improvements in lower extremity biomechanics, but that these improvements would be greater during a double-leg sagittal plane landing task than tasks performed on a single leg or in the frontal plane. METHODS: Ninety-seven competitive multi-directional sport athletes that competed at the middle- or high-school level were cluster randomized into intervention (n = 48, age = 15.4 ± 1.0 years, height = 1.7 ± 0.07 m, mass = 59.9 ± 11.0 kg) and control (n = 49, age = 15.7 ± 1.6 years, height = 1.7 ± 0.06 m, mass = 60.4 ± 7.7 kg) groups. The intervention group participated in an established 6-week warm-up-based ACL injury prevention programme. Three-dimensional biomechanical analyses of a double- (SAG-DL) and single-leg (SAG-SL) sagittal, and double- (FRONT-DL) and single-leg (FRONT-SL) frontal plane jump landing tasks were tested before and after the intervention. Peak angles, excursions, and external joint moments were analysed for group differences using 2 (group) × 4 (task) repeated measures MANOVA models of delta scores (post-pre-test value) (α < 0.05). RESULTS: Relative to the control group, no significant biomechanical changes were identified in the intervention group for any of the tasks (n.s.). However, a group by task interaction was identified for knee abduction (λ = 0.80, p = 0.02), such that participants in the intervention group showed relative decreases in knee abduction moments during the SAG-DL compared to the SAG-SL (p = 0.005; d = 0.45, CI = 0.04-0.85) task. CONCLUSION: A 6-week warm-up-based ACL injury prevention programme resulted in no significant biomechanical changes during a variety of multi-directional jump landings. Clinically, future prevention programmes should provide a greater training stimulus (intensity, volume), more specificity to tasks associated with the mechanism of ACL injury (single-leg, non-sagittal plane jump landings), and longer programme duration (> 6 weeks) to elicit meaningful biomechanical changes. LEVEL OF EVIDENCE: I.
    [Abstract] [Full Text] [Related] [New Search]