These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Cytokine-mediated changes in K+ channel activity promotes an adaptive Ca2+ response that sustains β-cell insulin secretion during inflammation. Author: Dickerson MT, Bogart AM, Altman MK, Milian SC, Jordan KL, Dadi PK, Jacobson DA. Journal: Sci Rep; 2018 Jan 18; 8(1):1158. PubMed ID: 29348619. Abstract: Cytokines present during low-grade inflammation contribute to β-cell dysfunction and diabetes. Cytokine signaling disrupts β-cell glucose-stimulated Ca2+ influx (GSCI) and endoplasmic reticulum (ER) Ca2+ ([Ca2+]ER) handling, leading to diminished glucose-stimulated insulin secretion (GSIS). However, cytokine-mediated changes in ion channel activity that alter β-cell Ca2+ handling remain unknown. Here we investigated the role of K+ currents in cytokine-mediated β-cell dysfunction. Kslow currents, which control the termination of intracellular Ca2+ ([Ca2+]i) oscillations, were reduced following cytokine exposure. As a consequence, [Ca2+]i and electrical oscillations were accelerated. Cytokine exposure also increased basal islet [Ca2+]i and decreased GSCI. The effect of cytokines on TALK-1 K+ currents were also examined as TALK-1 mediates Kslow by facilitating [Ca2+]ER release. Cytokine exposure decreased KCNK16 transcript abundance and associated TALK-1 protein expression, increasing [Ca2+]ER storage while maintaining 2nd phase GSCI and GSIS. This adaptive Ca2+ response was absent in TALK-1 KO islets, which exhibited decreased 2nd phase GSCI and diminished GSIS. These findings suggest that Kslow and TALK-1 currents play important roles in altered β-cell Ca2+ handling and electrical activity during low-grade inflammation. These results also reveal that a cytokine-mediated reduction in TALK-1 serves an acute protective role in β-cells by facilitating increased Ca2+ content to maintain GSIS.[Abstract] [Full Text] [Related] [New Search]